HK, SG, TW: LLM API 成本計算機 - OpenAI, Claude, Gemini 開發者定價工具
計算機,用於比較 OpenAI、Anthropic Claude 和 Google Gemini 之間的 LLM API 定價。此工具對於HK, SG, TW的開發人員、軟件工程師和項目經理至關重要,他們旨在優化 AI 驅動項目的預算和預測開支。無論您是使用 Python、JavaScript、Java、C#、Ruby、Go、Swift 還是 Kotlin 編程,此計算機都能幫助您了解使用不同 LLM API 的成本影響。它非常適合APP 開發(iOS 和 Android)、WEB 開發(前端和後端)、企業軟件開發以及將 AI 整合到設計工作流程中。根據令牌使用量、請求次數或其他定價維度,估算 GPT-4、GPT-3.5-turbo、Claude 3 Opus、Sonnet、Haiku、Gemini Pro 等各種模型的成本。有效規劃您的 API 消耗,做出明智決策,避免意外收費。非常適合初創企業、中小企業和大型企業,用於構建聊天機器人、內容生成工具、數據分析解決方案或任何利用大型語言模型的應用程式。獲取清晰透明的定價明細,有效管理您的 LLM 開支。
Comprehensive LLM API Pricing Calculator
Estimate your Large Language Model API usage costs across various providers and models.
Estimated Costs
-
API Provider
-
LLM Model (Text/Chat)
$0.00000
Est. Cost per Request (Total)
$0.00
Text Input Cost
$0.00
Text Output Cost
$0.00
Total Text API Cost
$0.00
Image Input Cost
$0.00
Image Generation Cost
$0.00
Embedding Model Cost
$0.00
Audio Model Cost
$0.00
Fine-Tuning Training Cost
$0.00
Fine-Tuned Model Usage Cost
$0.00
Total Fine-Tuning Related Cost
$0.00
Estimated Grand Total Cost
Key Factors Influencing LLM API Costs
- Model Choice: More powerful models are generally more expensive. Specialized models (embedding, audio, image) have their own pricing structures.
- Token Volume: Costs are directly tied to the number of input and output tokens for text and embedding models.
- Context Window: Models supporting larger context windows may have different pricing tiers or higher costs for utilizing the full window.
- Modalities: Generating images, processing image inputs, or transcribing/synthesizing audio incurs separate costs, often per image, per minute/second of audio, or per character for TTS.
- Fine-Tuning: Involves training costs (data processing, instance hours) and often different (sometimes higher) per-token usage rates for the custom model.
- Provider & Region: Pricing can vary between providers and sometimes by datacenter region.
- Usage Tiers, Commitments & Free Tiers: Discounts for high-volume usage, committed spend, or limited free tiers are common but not covered here.
- Rate Limits & Throughput: Exceeding rate limits might lead to throttling or require higher-tier plans with different pricing.
- Specific Features: Advanced features like function calling, RAG optimization, or higher resolutions for images can influence costs.
Understanding Tokens
Tokens are the basic units of text that LLMs process. For English text:
- 1 token is approximately 4 characters.
- 1 token is approximately ¾ of a word.
- 100 tokens are about 75 words.
Different models use different tokenization methods. Use provider-specific tools (like OpenAI's Tiktokenizer) to count tokens accurately for a particular model.
Cost Optimization Tips
- Choose the Right Model: Use the least expensive model that meets your performance requirements for each specific task.
- Optimize Prompts & Queries: Keep prompts concise. For embeddings, process only necessary text.
- Limit Output Length: Instruct models to generate shorter responses where appropriate.
- Batch Requests: Batch multiple queries into fewer API calls if supported efficiently by the provider.
- Implement Caching: Cache responses for common queries to avoid redundant API calls.
- Monitor Usage Regularly: Use provider dashboards to track spending and identify unexpected costs.
- Review Pricing Updates: LLM pricing can change frequently.
- Compress Data: For audio, use efficient formats and sampling rates. For text, be concise.
- Consider Asynchronous Processing: For non-real-time tasks, asynchronous APIs might be cheaper or handle larger loads better.
Disclaimer:
This calculator provides estimates based on publicly available pricing data (primarily referencing data up to May 2025 from various sources, subject to frequent changes) and user inputs. Actual LLM API costs can vary significantly. This tool is for guidance and planning purposes only and does not guarantee specific results. Always refer to the official LLM provider websites for the most current and accurate pricing information. All trademarks are the property of their respective owners.