ES, MX, AR: Calculadora Costo API LLM - Precios OpenAI, Claude, Gemini para Devs

Calculadora para comparar precios de API LLM entre OpenAI, Anthropic Claude y Google Gemini. Esta herramienta es indispensable para desarrolladores, ingenieros de software y gerentes de proyecto en ES, MX, AR que buscan optimizar presupuestos y prever gastos en proyectos impulsados por IA. Ya sea que programes en Python, JavaScript, Java, C#, Ruby, Go, Swift o Kotlin, esta calculadora te ayuda a comprender las implicaciones de costos al usar diferentes API LLM. Es perfecta para el desarrollo de APPS (iOS y Android), desarrollo WEB (frontend y backend), desarrollo de software empresarial e integración de IA en flujos de trabajo de diseño. Estima costos para varios modelos como GPT-4, GPT-3.5-turbo, Claude 3 Opus, Sonnet, Haiku, Gemini Pro y más, basándote en el uso de tokens, solicitudes u otras dimensiones de precios. Planifica tu consumo de API de manera efectiva, toma decisiones informadas y evita cargos inesperados. Ideal para startups, PYMEs y grandes empresas que construyen chatbots, herramientas de generación de contenido, soluciones de análisis de datos o cualquier aplicación que aproveche modelos de lenguaje grandes. Obtén desgloses de precios claros y transparentes para gestionar eficientemente tus gastos en LLM.



Comprehensive LLM API Pricing Calculator

Estimate your Large Language Model API usage costs across various providers and models.

1. Basic Configuration
2. Text/Chat Model Usage Parameters
3. Image Input Usage Parameters (Multimodal)
4. Image Generation Usage Parameters
5. Embedding Model Usage Parameters
6. Audio Model Usage Parameters (e.g., Speech-to-Text, Text-to-Speech)
7. Fine-Tuning Costs Parameters

Fine-Tuned Model Usage (Input applicable if 'Monthly' selected for Calculation Basis):

Estimated Costs

-

API Provider

-

LLM Model (Text/Chat)

$0.00000

Est. Cost per Request (Total)

$0.00

Text Input Cost

$0.00

Text Output Cost

$0.00

Total Text API Cost

$0.00

Image Input Cost

$0.00

Image Generation Cost

$0.00

Embedding Model Cost

$0.00

Audio Model Cost

$0.00

Fine-Tuning Training Cost

$0.00

Fine-Tuned Model Usage Cost

$0.00

Total Fine-Tuning Related Cost

$0.00

Estimated Grand Total Cost

Key Factors Influencing LLM API Costs

  • Model Choice: More powerful models are generally more expensive. Specialized models (embedding, audio, image) have their own pricing structures.
  • Token Volume: Costs are directly tied to the number of input and output tokens for text and embedding models.
  • Context Window: Models supporting larger context windows may have different pricing tiers or higher costs for utilizing the full window.
  • Modalities: Generating images, processing image inputs, or transcribing/synthesizing audio incurs separate costs, often per image, per minute/second of audio, or per character for TTS.
  • Fine-Tuning: Involves training costs (data processing, instance hours) and often different (sometimes higher) per-token usage rates for the custom model.
  • Provider & Region: Pricing can vary between providers and sometimes by datacenter region.
  • Usage Tiers, Commitments & Free Tiers: Discounts for high-volume usage, committed spend, or limited free tiers are common but not covered here.
  • Rate Limits & Throughput: Exceeding rate limits might lead to throttling or require higher-tier plans with different pricing.
  • Specific Features: Advanced features like function calling, RAG optimization, or higher resolutions for images can influence costs.

Understanding Tokens

Tokens are the basic units of text that LLMs process. For English text:

  • 1 token is approximately 4 characters.
  • 1 token is approximately ¾ of a word.
  • 100 tokens are about 75 words.

Different models use different tokenization methods. Use provider-specific tools (like OpenAI's Tiktokenizer) to count tokens accurately for a particular model.

Cost Optimization Tips

  • Choose the Right Model: Use the least expensive model that meets your performance requirements for each specific task.
  • Optimize Prompts & Queries: Keep prompts concise. For embeddings, process only necessary text.
  • Limit Output Length: Instruct models to generate shorter responses where appropriate.
  • Batch Requests: Batch multiple queries into fewer API calls if supported efficiently by the provider.
  • Implement Caching: Cache responses for common queries to avoid redundant API calls.
  • Monitor Usage Regularly: Use provider dashboards to track spending and identify unexpected costs.
  • Review Pricing Updates: LLM pricing can change frequently.
  • Compress Data: For audio, use efficient formats and sampling rates. For text, be concise.
  • Consider Asynchronous Processing: For non-real-time tasks, asynchronous APIs might be cheaper or handle larger loads better.

Disclaimer:

This calculator provides estimates based on publicly available pricing data (primarily referencing data up to May 2025 from various sources, subject to frequent changes) and user inputs. Actual LLM API costs can vary significantly. This tool is for guidance and planning purposes only and does not guarantee specific results. Always refer to the official LLM provider websites for the most current and accurate pricing information. All trademarks are the property of their respective owners.

© Comprehensive LLM API Pricing Calculator. All Rights Reserved.